ni Documentation
Release 0.2

Jacob Huth

March 16, 2015

1 Installation

1.1 dataPackage
1.2 model Package

1.3 The ni.model.pointprocess Module

14 toolsPackage

2 Indices and tables

3 Some Examples

3.1 BasicExample

3.2 Generating exampledatao

3.3 Usingother sourcesofdata

34 Addingacustomkernel,

3.5 StatCollectors e
Python Module Index

CONTENTS

CHAPTER
ONE

INSTALLATION

To install the toolbox, clone the git repository, or download the zip file from: https://github.com/jahuth/ni

Clone the repository with:

git clone https://github.com/jahuth/ni.git

In the repository the toolbox, default configuration, the documentation and example files are included. If you have the
necessary packages installed, you can start using it right away.

If you lack any of the following packages, you might want to install them (with eg. pip)

ipython matplotlib scipy numpy pandas scikit-learn statsmodels

Contents:

1.1 data Package

Provides easy access to some data.

1.1.1 data Module

Using the ni.Data data structures

The Data class is supposed to be easily accessible to the ni. models. They contain an index that separates the time
series into different cells, trials and conditions.

Conditions are mostly for the users, as they are ignored by the model classes. They should be used to separate data
before fitting a model on them, such that only data from a certain subset of trials (ie. one or more experimental
conditions) are used for the fit. If multiple conditions are contained in a dataset that is passed to a model, the model
should treat them as additional trials.

Trials assume a common time frame ie. that bin O of each trial corresponds to the same time relative to a stimulus,
such that rate fluctuations can be averaged over trials.

Cells signify spike trains that are recorded from different sources (or spike sorted), such that there can be correlations
between cells in a certain trail.

The index is hierarchical, as in for each condition there are several trials, which each have several cells. But since
modelling is mainly used to distinguish varying behaviour of the same ensemble of cells, the number of cells in a trial
and the number of trials pro condition has to be equal.

https://github.com/jahuth/ni

ni Documentation, Release 0.2

Storing Spike Data in Python with Pandas

The pandas package allows for easy storage of large data objects in python. The structure that is used by this toolbox is
the pandas pandas .MultiIndexedFrame whichis a pandas.DataFrame / pandas.DataFrame with an Index

that has multiple levels.

The index contains at least the levels ' Cell’, ' Trial’ and ' Condition’. Additional Indizex can be used
(eg. "Bootstrap Sample’ for Bootstrap Samples), but keep in mind that when fitting a model only Ce11’ and
"Trial’ should remain, all other dimensions will be collapsed as more sets of Trials which may be indistinguishable

after the fit.

Condition | Cell | Trial | t (Timeseries of specific trial)
0 0 0 0,0,0,0,1,0,0,0,0,1,0...
0 0 1 0,0,0,1,0,0,0,0,1,0,0...
0 0 2 0,0,1,0,1,0,0,1,0,1,0...
0 1 0 0,0,0,1,0,0,0,0,0,0,0...
0 1 1 0,0,0,0,0,1,0,0,0,1,0...
1 0 0 0,0,1,0,0,0,0,0,0,0,1...
1 0 1 0,0,0,0,0,1,0,1,0,0,0...

To put your own data into a pandas . DataFrame, so it can be used by the models in this toolbox create a Multilndex

for example like this:

import ni

import pandas as pd

d = []

tuples = []

for con in range(nr_conditions):

for t in range(nr_trials):
for ¢ in range(nr_cells):

spikes =
if spikes

list (ni.model.pointprocess.getBinary (Spike_times_STC.all_SUi

| =

[1:

d.append (spikes)
tuples.append((con,t,c))
names=[’Condition’,’Trial’,’Cell’])

index =
data =

pd.MultiIndex.from_tuples (tuples,
ni.data.data.Data (pd.DataFrame (d,

index = index))

If you only have one trial if several cells or one cell with a few trials, it can be indexed like this:

from ni.data.data import Data import pandas as pd

index = pd.Multilndex.from_tuples([(0,0,i) for i in range(len(d))], names=["Condition’,’Cell’,' Trial’])

data = Data(pd.DataFrame(d, index = index))

To use the data you can use ni .data.data.Data.filter ():

only_ first_trials = data.filter (0,

level=

"Trial’)

filter returns a copy of the Data object

only_the_first_trial = data.filter (0,

only_the_first_trial = data.condition(0) .

only_some_trials = data.trial (range(3,15

using slices,

Also ix and xs pandas operations can be useful:

level="Trial’) .filter (0,

cell(0).trial (0) # condition(),

))

ranges or boolean indexing causes the DataFrame to be indexed again from 0 to N,

level='Cell’) .filter (O,

level='Condit:

cell () and trial () are shor

in

Chapter 1. Installation

http://pandas.pydata.org/
http://pandas.pydata.org/pandas-docs/dev/dsintro.html#dataframe

ni Documentation, Release 0.2

plot (data.data.ix[(0,0,0):(0,3,-1)].transpose () .cumsum())
plot (data.data.xs (0, level='Condition’) .xs(0,level="Cell’) .ix[:5] .transpose () .cumsum())

class ni.data.data.Data (matrix, dimensions= [], key_index="1’, resolution=1000)
Spike data container
Contains a panda Data Frame with Multilndex. Can save to and load from files.
The Index contains at least Trial, Cell and Condition and can be extended.

as_list_of series (list_conditions=True, list_cells=True, list trials=False,

list_additional_indizes=True)
Returns one timeseries, collapsing only certain indizes (on default only trials). All non collapsed indizes

as_series ()
Returns one timeseries, collapsing all indizes.

The output has dimensions of (N,1) with N being length of one trial x nr_trials x nr_cells x nr_conditions
(x additonal indices).

If cells, conditions or trials should be separated, use as_1list_of_series () instead.

cell (cells=False)
filters for an array of cells ->see ni.data.data.Data.filter ()

condition (conditions=False)
filters for an array of conditions -> see ni .data.data.Data.filter ()

filter (array=False, level="Cell’)
filters for arbitrary index levels array a number, list or numpy array of indizes that are to be filtered level
the level of index that is to be filtered. Default: ‘Cell’

firing_rate (smooth_width=0, trials=False)
computes the firing rate of the data for each cell separately.

getFlattend (all_in_one=True, trials=False)
Deprecated since version 0.1: Use as_1list_of_ series () and as_series () instead

Returns one timeseries for all trials.

The all_in_one flag determines whether * Ce11’ and ' Condition’ should also be collapsed. If set to
False and the number of Conditions and/or Cells is greater than 1, a list of timeseries will be returned. If
both are greater than 1, then a list containing for each condition a list with a time series for each cell.

html _view ()

interspike_intervals (smooth_width=0, trials=False)
computes inter spike intervalls in the data for each cell separately.

read_pickle (path)
Loads a DataFrame from a file

reduce_resolution (factor=2)

shape (level)
Returns the shape of the sepcified level:

>>> data.shape (' Trial’)
100

>>> data.shape('Cell’) == data.nr_cells
True

1.1. data Package 3

ni Documentation, Release 0.2

time (begin=None, end=None)
gives a copy of the data that contains only a part of the timeseries for all trials,cells and conditions.

This resets the indices for the timeseries to 0...(end-begin)

to_pickle (path)
Saves the DataFrame to a file

trial (trials=False)
filters for an array of trials -> see ni . data.data.Data.filter ()

ni.data.data.loadFromFile (path)
loads a pandas DataFrame from a file

ni.data.data.matrix to_dataframe (matrix, dimensions)
conerts a trial x cells matrix into a DataFrame

ni.data.data.merge (datas, dim, keys=False)
merges multiple Data instances into one:

data = ni.data.data.merge([ni.data.data.Date(f) for f in [’datal.pkl’,’data2.pkl’,’data3.pkl’]],

ni.data.data.saveToFile (path, o)
saves a DataFrame-like to a file

1.1.2 decoding_data Module

Loads Data into a Panda Data Frame
class ni.data.decoding_data.Cell (data)

class ni.data.decoding_data.DecodingData
Loads Data into a Panda Data Frame

class ni.data.decoding_data.Trial

addCell (data)
getMatrix ()

ni.data.decoding_data.get ()

1.1.3 monkey Module

ni.data.monkey.Data (file_nr="101a03’, resolution=1000, trial= [], condition= [], cell= [])
Loads Data into a Data Frame

Expects a file number. Available file numbers are in ni.data.monkey.available_files:

>>> print ni.data.monkey.available_files
["101a03”, "104al10’, "107a03’, ’108a08’, ’112a03’, "101a03’, ’104all’, ’107a04’,

trial
number of trial to load or list of trials to load. Non-existent trial numbers are ignored.
condition
number of condition to load or list of conditions to load. Non-existent condition numbers are ignored.

cell

4 Chapter 1. Installation

109a04

ni Documentation, Release 0.2

number of cell to load or list of cells to load. Non-existent cell numbers are ignored.
Example:

data = ni.data.monkey.Data(trial_nr = ni.data.monkey.available_trials[3], trial=range(10),

1.2 model Package

This package provides two kinds of models:
* Generative pointprocess models (see Section ni.model.pointproccess)
* GLM based inhomogeneous pointprocess (ip) models

The pointprocess models can instantiate a given firing rate function with a spike train. The ip models use “components”
that are combined to fit a spike train using a GLM.

1.2.1 What is a “component”?

For the ni.model package, a component is a set of time series (or a way to generate these) in a Generalized Linear
Model that is used to fit a set of spike trains. When a model is fitted to a set of spike trains, the components are used
to compute the designmatrix. Each component provides 1 or more timeseries that represent the influence of a specific
event or aspect that is expected to affect the firing rate at that specific point in time to a certain degree.

Eg. a component can be as simple as a constant value over time, or it can be 0 for most of the time, except at those
time points where a specific event occurs (eg. a spike of a different neuron). The design matrix shown here is mostly
0 and contains three components (history, rate and a constant):

0 | | |
| |
|

| I | |
T o A A R RN A I‘II || |||‘||| WL .
|||||‘||‘ L O L I‘I |||‘|||I || History
timeframe is
1l

= AR LA AN A RN R AR RCR A TTITTETTTTT)

spike

10

independent variables

Rate
timeframe is
relative to

15 begin of trial
, , , , , Constant
0 5000 10000 15000 20000 25000
time
Trial 1 Trial 2

To model a more or less precise time course of the effect of an event, the component needs to create mutiple time
series, each representing a time window relative to the event (usually following the event, if a causal link is assumed).
It is convenient to use splines to model these windows, because they will produce a smooth time series when summed.
These time windows can be arranged linearly (each spanning the same amount of time) or logarithmically (such that

1.2. model Package 5

condi

ni Documentation, Release 0.2

there is a higher resolution close to the event than further away). The length and number of the time windows can be
adjusted, since their explanatory value depends on the modeled process.

1.2.2 The Rate component

Given that each spike train is alligned in the same timeframe regarding a certain stimulus (or sequence of stimuli), a
rate component models rate fluctuations that occur in every trial. This is done by creating a number of timeseries, each
representing a portion of the trial time: eg. early in the trial, in the middle of the trial, at the end of the trial.

A ni.model.designmatrix.RateComponent will span the whole trial with a given number of knots while
the class ni .model.designmatrix.AdaptiveRateComponent will use the firing rate to space out the knots
to cover (on average) an equal amount of spikes.

1.2.3 The history components

Since the spike data containers contain multiple spike trains, a component can access the spiketimes of each of the
spike trains contained. The history components use these spike times to model the effect of a certain spike train on the
dependent spike train.

« autohistory: the effect of the spike train on itself. Eg. refractory period or periodic spiking
* crosshistory: models the effect of another spike train on the one modeled

* 2nd order autohistory_2d: for bursting neurons, the autohistory alone will not capture the behaviour of the
neuron, as it has to either predict periodic activity for the whole trial or no auto effect at all. The 2nd order
history takes into account two spikes, such that the end of a burst can be predicted.

Here you can see the slow time frame of a rate fluctuation (fixed to the time frame of each trial) and the fast time frame
of a history component (each relative to a spike):
-vos + [T T T T T I T I I T T T I T T M T TAT T
B N T W B TR T T T T Y T T W W W W T T T T T TV T AT T T W T Y T
15 IO OO A0 OTOUW0 UIOC T OO 00 i 000

n I
+-365*% l‘.J‘d'..4'.J‘_I'.‘_'s_"s_‘\4‘_'L/‘4‘_'_'|.'l..'“_’u'_'s_’_"u'_.‘u‘_"._'\.."_‘_/' VAU AR WA A A AR A A AR AN A AR AV A A ARA A MM VLA MM P AM A AR A AW A AR A AR

+16* |M. A AN MMM A AU A AN AN MM A M A AR AN A M AN A AN ML ."'U MU A AN A M A

+378% l\"-_, ’\"‘_,

4495+ I/_"-—-—__ T

+4.az*|_.r--'-’ —_— N —_—

+]..B=1‘l_ - - |

+2.58% — —_ I —

+2.64%

+ro.02*|7 E———— -

+271e! _ - R —

+.1.3a*| — _— - -_

+-146% _ _

+-375% ! - — _— —

+127e! — —

+r4.05*| 1 -

am iy, bt R

o 5000 10000 15000 20000 25000 30000

6 Chapter 1. Installation

ni Documentation, Release 0.2

1.2.4 Configuring a Model

The model class has a default behaviour that assumes you want to have one rate component, one autohistory com-
ponenet and a crosshistory component for each channel. This behaviour can be changed by providing a different
configuration dictionary to the model.

Eg. to create a model without any of the components:

model = ni.model.ip.Model ({ ‘name’ :’Model’,”autohistory’ :False, ‘crosshistory’:False, ’rate’:False})

Or, if additionally the 2nd order autohistory should be enabled:

model = ni.model.ip.Model ({ ‘name’ :’Model’,”autohistory_2d’ :True })

Important for models is also which spike train channel should be modeled by the others:

model_0 = ni.mode.ip.Model ({’cell’ :0})
model_1 = ni.mode.ip.Model ({’cell’” :1})
model_2 = ni.mode.ip.Model ({’cell’ :2})
model_3 = ni.mode.ip.Model ({’cell’ :3})

Instead of only true or false, crosshistory can also be a list of channels that should be used:

model = ni.mode.ip.Model ({’cell’:1,’crosshistory’:[2]}) # cell 1 modeled using activity of cell 2

Also there are a number of configuration options that are passed on to a component to change its behaviour:
* Rate Component:
— knots_rate: how many knots should be created

— adaptive_rate: Whether the RateComponent or AdaptiveRateComponent should be used. The AdaptiveRateCon

+ adaptive_rate_exponent (default = 2)
% adaptive_rate_smooth_width (default = 20)
 History Components (autohistory and crosshistory):
— history_length: total lenght of the time spanned by the history component
— history_knots: number of knots to span
These options are set for the whole model at once:

model = ni.mode.ip.Model ({’knots_rate’:10,"’history_length’:200}) # sets history_length rfor autohisto.

1.2.5 Fitting a Model

Anip.Model can be fittedonani.data.data.Data object and will produce ani .model.ip.FittedModel.
This will contain the fitted coefficients and the design templates, such that the different components can be inspected
individually:

model = ni.model.ip.Model ({’cell’:2,’crosshistory’:[1,31})
fm = model.fit (data.trial (range (data.nr_trials/2)))

fm.plot_prototypes () # will plot each fitted component
plot (fm.firing_rate_model () .sum(l)) # will plot the firing rate components (rate + constant)

plot (fm.statistics[’pvalues’]) # plots the pvalues for each coefficient

1.2. model Package 7

ni Documentation, Release 0.2

1.2.6 Creating custom components

To be precise, what happens when a model is fitted is the following:

¢ The model creates a ni .model.designmatrix.DesignMatrixTemplate and adds components (which are subclas:

— when the Component classes are created they are provided with most of the information they need
(eg. trial length)

¢ The DesignMatrixTemplate is combined with the data which creates the actual designmatrix by:

— For each component the function getSplines is called, providing the component with spikes of other
neurons

— The component returns a 2 dimensional numpy array that has the dimensions of length of time x
number of time series

— if the array does not have the length of the complete time series, it will be repeated until it fits. So a
kernel that has the length of exactly one trial will be repeated for each trial (the ni models by default
make all trials the same length).

* The design matrix is then passed to the GLM fitting backend

So, if you want to add a component, this can be either implement a function getSplines that returns
a 2d numpy array that has the correct dimensions (time bins x N), or you can use or inherit from
ni.model.designmatrix.Component and set the self.kernel attribute which will then be returned:

my_kernel = ni.model.create_splines.create_splines_linspace (time_length, 6, 0) # creates a 6 knotted
c = Component (header='"My own component’,kernel=my_kernel)
model = ni.model.ip.Model (custom_components = [c])

Applications can be eg. a rate component that is only applied to trials, while a second component is applied to the
others. If two kinds of trials are alternated this could be done like this:

from ni.model.designmatrix import Component

my_kernel = ni.model.create_splines.create_splines_linspace (time_length, 6, 0) # creates a 6 knotted
is_trial_type_1 = repeat ([0,1]+* (number_of_trials/2),trial_length)

is_trial_type_ 2 = 1 - is_trial_type_1

cl = Component (header=’'Trial Type 1 Rate’,kernel=np.concatenate([my_kernel]«number_of_trials) =+ is_t:
c2 = Component (header=’'Trial Type 2 Rate’,kernel=np.concatenate([my_kernel]+number_of_trials) = is_t:
model = ni.model.ip.Model ({’custom components’: [cl,c2]},trial_length)

Or alternatively you can overwrite a kernel of the rate component:

kernel = np.concatenate ([
np.concatenate ([my_kernel] xnumber_of_trials) * is_trial_type_1[:,np.newaxis]),
np.concatenate ([my_kernel] xnumber_of_trials) * is_trial_type_2[:,np.newaxis])
1)

model = ni.model.RateModel ({’rate’ :True, ’'custom_kernels’: [{’Name’:’rate’,’Kernel’: kernel}]})

1.2.7 Classes in the ni.model package

class ni .model .BareModel (configuration={})
Bases: ni.model.ip.Model
This is a shorthand class for an Inhomogenous Pointprocess model that contains no Components.
This is completely equivalent to using:

ni.model.ip.Model({ ‘name’:’Bare Model’, autohistory’:False, ‘crosshistory’:False, ‘rate’:False})

8 Chapter 1. Installation

ni Documentation, Release 0.2

class ni.model .RateModel (knots_rate=10)
Bases: ni.model.ip.Model

This is a shorthand class for an Inhomogenous Pointprocess model that contains only a RateComponent and
nothing else.

This is completely equivalent to using:

ni.model.ip.Model({ ‘name’:’Rate Model’, autohistory’:False, ‘crosshistory’:False,
‘knots_rate’:knots_rate})

class ni.model .RateAndHistoryModel (knots_rate=10, history_length=100, history_knots=4)
Bases: ni.model.ip.Model

This is a shorthand class for an Inhomogenous Pointprocess model that contains only a RateComponent, a
Autohistory Component and nothing else.

This is completely equivalent to using:

ni.model.ip.Model({ ‘name’:’Rate Model with Autohistory Component’,’ autohistory’:True,
‘crosshistory’:False, ‘knots_rate’:knots_rate, ‘history_length’:history_length,
‘knot_number’:history_knots})

ip Module
class ni .model.ip.Configuration (c=False)
Bases: ni.tools.pickler.Picklable
The following values are the defaults used:
name = “Inhomogeneous Point Process”
cell=0
Which cell to model in the data (index)
Boolean Flags for Default Model components (True: included, Fals: not included):

autohistory = True
crosshistory = True
rate = True

constant = True
autohistory_2d = False

backend = “glm”
The backend used. Valid options: “glm” and “elasticnet”
backend_config = False
knots_rate = 10
Number of knots in the rate component
adaptive_rate = False
Whether to use linear spaced knots or an adaptive knot spacing, which depends on the

variability of the firing rate. Uses these two options:

adaptive_rate_exponent = 2
adaptive_rate_smooth_width = 20

history_length = 100

1.2. model Package 9

ni Documentation, Release 0.2

Length of the history kernel
knot_number = 3
Number of knots in the history kernel
custom_kernels =[]
List of kernels that overwrite default component behaviour. To overwrite the rate compo-
nent use:

[{ "Name’ :"rate’, ’"Kernel’: np.ones(100) }]

custom_components = []

List of components that get added to the default ones.
self.be_memory_efficient = True

Whether or not to save the data and designmatrix created by the fitting model

Unimportant options no one will want to change:

delete_last_spline = True
design = "new’
mask = np.array([Truel)

Look at the [source] for a full list of defaults.

class ni.model.ip.FittedModel (model)
Bases: ni.tools.pickler.Picklable

When initialized via Model.fit() it contains a copy of the configuration, a link to the model it was fitted from and
fitting parameters:

FittedModel. fit
modelFit Output
FittedModel. design

The DesignMatrix used. Use design.matrix for the actual matrix or design.get(‘...’) to
extract only the rows that correspond to a keyword.

compare (data)
Using the model this will predict a firing probability function according to a design matrix.

Returns:

Deviance_all: dv, LogLikelihood_all: 11, Deviance: dv/nr_trials, LogLikelihood: 1l/nr_trials,
IIf: Likelihood function over time 1l: np.sum(11)/nr_trials

complexity
returns the length of the parameter vector

dumps ()
see ni.tools.pickler

family fitted function (p)
only implemented family: Binomial

firing rate _model ()
returns a time series which contains the rate and constant component

10 Chapter 1. Installation

ni Documentation, Release 0.2

generate (bins=-1)
Generates new spike trains from the extracted staistics

This function only uses rate model and autohistory. For crosshistory dependence, use ip_generator.
bins
How many bins should be generated (should be multiples of trial_length)

getParams ()
returns the parameters of each design matrix component as a list

getPvalues ()
returns pvalues of each component as a dictionary

html_view ()
seeni.tools.html_view

plotParams (x=-1)
plots the parameters and returns a dictionary of figures

plot_firing rate_model ()
returns a time series which contains the rate and constant component

plot_prototypes ()
plots each of the components as a prototype (sum of fitted b-splines) and returns a dictionary of figures

predict (data)
Using the model this will predict a firing probability function according to a design matrix.

prototypes ()
returns a dictionary with a prototype (numpy.ndarray) per component

pvalues_by_ component ()
returns pvalues of each component as a dictionary

class ni.model.ip.Model (configuration=None, nr_bins=0)
Bases: ni.tools.pickler.Picklable

backend
cell

compare (data, p, nr_trials=1)
will compare a timeseries of probabilities p to a binary timeseries or Data instance data.

Returns:

Deviance_all: dv, LogLikelihood_all: 11, Deviance: dv/nr_trials, LogLikelihood: 1l/nr_trials,
IIf: Likelihood function over time 1I: np.sum(11)/nr_trials

dm (in_spikes, design=None)
Creates a design matrix from data and self.design

in_spikes ni.data.data. Data instance
design (optional) a different designmatrix.DesignMatrixTemplate

fit (data=None, beta=None, x=None, dm=None, nr_trials=None)
Fits the model

in_spikes ni.data.data. Data instance

example:

1.2. model Package 11

ni Documentation, Release 0.2

from scipy.ndimage import gaussian_filter

import ni

model = ni.model.ip.Model (ni.model.ip.Configuration({’crosshistory’:False}))

data = ni.data.monkey.Data()

data = data.condition(0) .trial (range (int (data.nr_trials/2)))

dm = model.dm(data)

x = model.x (data)

from sklearn import linear_model

betas = []

fm = model.fit (data)

betas.append (fm.beta)

print "fitted."

for clf in [linear_model.LinearRegression(), linear_model.RidgeCV(alphas=[0.1, 1.0, 10.0])]:
clf.fit (dm, x)
betas.append(clf.coef_)

figure ()

plot (clf.coef_.transpose(),’.”)

title (' coefficients’)

prediction = np.dot (dm,clf.coef_.transpose())
figure ()

plot (prediction)

title ('prediction’)

11 = x » log(prediction) + (len(x)-x)*log(l-prediction)
figure ()

plot (11)

title("11")

print np.sum(1l1l)

fit_with_design_matrix (fittedmodel, spike_train_all_trial, dm)
internal function

generateDesignMatrix (data, trial_length)
generates a design matrix template. Uses meta data from data to determine number of trials and trial

length.

html_view ()
seeni.tools.html_view

predict (beta, data)
will predict a firing probability function according to a design matrix.

x (in_spikes)
converts data into a dependent variable time series, ie. it chooses the cell that was configured and extracts
only this timeseries.

designmatrix Module

class ni.model.designmatrix.AdaptiveRateComponent (header="rate’, rate=False, expo-
nent=2, knots=10, length=1000,

kernel=False)
Bases: ni.model.designmatrix.Component

Rate Design Matrix Component

header: name of the kernel component rate: a rate function that determines exponent: the rate function will be
taken to thins power to have a higher selctivity for high firing rates knots: Number of knots length: length of the
component. Will be multiplied

12 Chapter 1. Installation

ni Documentation, Release 0.2

kernel: use this kernel instead of a newly created one

getSplines (data= [])

class ni.model.designmatrix.Component (header="Undefined’, kernel=0)
Bases: ni.tools.pickler.Picklable

Design Matrix Component

header: name of the kernel component kernel: kernel that will be tiled to fill the design matrix

getSplines (data= [])

class ni.model.designmatrix.DesignMatrix (length, width=1)
Bases: ni.tools.pickler.Picklable

Use DesignMatrixTemplate to create a design matrix.

This class computes an actual matrix, where DesignMatrixTemplate can be saved before the matrix is

instanciated.

add (splines, header)

addLinSpline (knots, header, length=0)

addLogSpline (knots, header, length=0)

clip ()

get (filt)
getIndex (filt)
getMask (filt)
plot (filt="")

setMask (mask)

class ni.model.designmatrix.DesignMatrixTemplate (length, trial_length=0)
Bases: ni.tools.pickler.Picklable

Most important class for Design Matrices

Uses components that are then combined into an actual design matrix:

>>> DesignMatrixTemplate (data.nr_trials » data.time_bins)

>>> design_template.

add (designmatrix

>>> kernel = cs.create_splines_logspace(self.configuration.history_length, self.configuration.kn
.HistoryComponent (" autohistory’, kernel=kernel))
.HistoryComponent (' crosshistory’+str(2), channel=2, kernel =

>>> design_template.
>>> design_template.
>>> design_template.
>>> design_template.

add (component)
Adds a component

combine (data)

add (designmatrix
add (designmatrix
add (designmatrix
combine (data)

.RateComponent (' rate’,self.configuration.knots_rate,trial_le
.Component (' constant’,np.ones ((1,1))))

combines the design matrix template into an actual design matrix.

It needs an ni.Data instance for this to place the history splines.

get (filr)

returns the splines of the first component, the header of which matches filt

getIndex (filt)

returns the index (design matrix rows) of the component matching filt

1.2. model Package

13

ni Documentation, Release 0.2

getMask (filt)
reurns the mask of the component matching filt

get_components (filt)
returns all component, the header of which matches filt

setMask (mask)
sets a mask (list of boolean values), which design matrix rows to use. Default is all True. If mask is shorter*
than the desgin matrix, all following values are assumed True.

class ni .model.designmatrix.HistoryComponent (header="autohistory’, channel=0, his-
tory_length=100, knot_number=4,
order_flag=1, kernel=False,

delete_last_spline=True)
Bases: ni.model .designmatrix.Component

History Design Matrix Component
Will be convolved with spikes before fitting

header: name of the kernel component channel: which channel the kernel should be convolved with
(default 0) history_length: length of the kernel knot_number: number of knots (will be logspaced)
order_flag: default O (no higher order interactions)

kernel: use this kernel instead of a newly created one
Atm only order 1 interactions

getSplines (channels= [])

class ni .model.designmatrix.HistoryDesignMatrix (spikes, history_length=100,
knot_number=5, order_flag=1, ker-
nel=False)

Internal helper class

class ni .model.designmatrix.RateComponent (header=’rate’, knots=10, length=1000, ker-

nel=False)
Bases: ni.model.designmatrix.Component

Rate Design Matrix Component

header: name of the kernel component knots: Number of knots length: length of the component. Will be
multiplied

kernel: use this kernel instead of a newly created one
getSplines (data= [])

class ni .model.designmatrix.SecondOrderHistoryComponent (header=’autohistory’, chan-

nel_1=0, channel_2=0,
history_length=100,

knot_number=4, or-
der_flag=1, ker-

nel_I=False, kernel_2=Fualse,

delete_last_spline=True)
Bases: ni.model.designmatrix.Component

History Design Matrix Component with Second Order Kernels
Will be convolved with spikes before fitting

header: name of the kernel component channel: which channel the kernel should be convolved with
(default 0) history_length: length of the kernel knot_number: number of knots (will be logspaced)
order_flag: default O (no higher order interactions)

14 Chapter 1. Installation

ni Documentation, Release 0.2

kernel: use this kernel instead of a newly created one

Atm only order 1 interactions
getSplines (channels= [], get_ld_splines=False, beta=False)

ni.model.designmatrix.convolve_spikes (spikes, kernel)
Convolves a spike train with a kernel by adding the kernel onto every spiketime.

ni.model.designmatrix.convolve_spikes_2d (spikes_a, spikes_b, kernel_a, kernel_b)
Does a 2d convolution

net_sim Module

The Net Simulator is divided into a Configuration, Net and a Result object.

After configuration of the network it can be instantiated by calling Net(conf) with a valid configuration conf. This
creates eg. random connectivity so that the simulation with the same network can be repeated multiple times.

c = ni.model.net_sim.SimulationConfiguration/ ()
c.Nneur = 10

net = ni.model.net_sim.Net (c)

print net

net.plot_firing_rates()

"ni.model.net_sim’ Simulation Setup
Timerange: (250, 10250)
10 channels with firing rates:

[12.815928361, 29.6328550796, 19.9415819867, 13.6710936491, 20.242131795, 11.4661487294,
Firing Rates plot

30

25

20

15

10
H 1 2 3 4 5 B 7 B 9
for i in range(1,11):
print i
resl = net.simulate ()

resl.plot_firing_rates()

1.2. model Package 15

11.:

ni Documentation, Release 0.2

plot (numpy.array ([r.num_spikes_per_channel for r in net.results]))
plot (

400

350

300

250

2001

150

104

0

class

[0]*len (net.results))

0 5 10 15 20 25

ni.model.net_sim.Net (config)

The Net Simulator class. Use with an Configuration instance.

load (filename)
loads itself from a file

plot_firing_ rates ()
plots the intended firing rates

plot_interaction ()
plots the interactions of the network

save (filename)
saves itself to a file

45

16

Chapter 1.

Installation

ni Documentation, Release 0.2

simulate ()
Simulates the network

class ni.model.net_sim.SimulationConfiguration
Configures the simulation. The default values are:

Nneur = 100 sparse_coeff = 0.1 Trial_Time = 1000 prior_epoch = 250 Ntrials = 10 Nsec = Ntri-
als*Trial_Time/1000 Ntime = Nsec*1000 eps =0.1 frate_mu = 1.0/25.0 Nhist = 50 output = False
rate_function = False

Nsec
Ntime

class ni.model.net_sim.SimulationResult
Holds the results of a simulation

data

plot ()
plots the resulting spike train

plot_firing_ rates ()
plots the resulting firing rate

plot_firing rates_per_ channel ()
plots the firing rate for each channel

stopTimer ()
stops the internal timer

store (data)
stores data in the container

ni.model.net_sim.simulate (config)
creates a network and simulates it.

create_design_matrix_vk Module

ni.model.create_design_matrix_vk.computeCovariate (index, o, C, VI)
Computes a row of the designMatrix corresponding to a certain covariate.

ni.model.create_design_matrix_vk.create_design_matrix vk (VI, o)
Fills free rows in the current design matrix, deduced from size(mD) and len(freeCov), corresponding to a single
covariate according to the spline bases of Volterra kernels. The current kernel(s) and the respective numbers
of covariates that will be computed for each kernel is deduced from masterIndex by determining the position
in hypothetical upper triangular part of hypercube with number of dimensions corresponding to current kernel
order. Using only the ‘upper triangular part’ of the hypercube reflects the symmetry of the kernels which stems
from the fact that only a single spline is used as basis function.

saves covariate information in cell array ‘covariates’, format is {kernelOrder relativePositionInKernel product-
TermsOfV1}

Anpassung fiir Gordon: masterIndex, log, C, mD, freeCov werden berechnet statt iibergeben.

ni.model.create_design_matrix_vk.detKernels (freeCov, masterindex, oCov, mOrder, C)
Determines from the number of free slots in Designmatrix len(freeCov) and the current masterIndex how many
covariates for which Volterra coefficient can be computed. Updates model order mOrder.

ni.model.create_design_matrix_vk.detModelOrder (masterlndex, C)
Determines model order and corresponding number of covariates.

1.2. model Package 17

ni Documentation, Release 0.2

ni.model.create_design_matrix_vk.numCov (C, complexity)
Computes number of covariates in a model for which len(complexity) symmetric kernels are assumed.

ni.model.create_design_matrix_vk.upTriHalf (C, cDim)
Computes number of elements in upper triangular half of hybercube.

create_splines Module
ni.model.create_splines.N(u,i,p, knots)
Compute Spline Basis
Evaluates the spline basis of order p defined by knots at knot i and point u.

ni.model.create_splines.augknt (knots, order)
Augment knot sequence such that some boundary conditions are met.

ni.model.create_splines.create_splines (length, nr_knots, remove_last_spline, fn_knots)
Generates B-spline basis functions based on the length and number of knots of the ongoing iteration. fn_knots
is a function that computes the knots.

ni.model.create_splines.create_splines_linspace (length, nr_knots, remove_last_spline)
Generates B-spline basis functions based on the length and number of knots of the ongoing iteration

ni.model.create_splines.create_splines_logspace (length, nr_knots, remove_last_spline)
Generates B-spline basis functions based on the length and number of knots of the ongoing iteration

ni.model.create_splines.spcol (x, knots, spline_order)
Computes the spline colocation matrix for knots in x.

The spline collocation matrix contains all m-p-1 bases defined by knots. Specifically it contains the ith basis in
the ith column.

Input: x: vector to evaluate the bases on knots: vector of knots spline_order: order of the spline
Output:

colmat: m x m-p matrix The colocation matrix has size m x m-p where m denotes the number of points
the basis is evaluated on and p is the spline order. The colums contain the ith basis of knots evaluated
on X.

ni.model.create_splines.spline (x, knots, p, i=0.0)
Evaluates the ith spline basis given by knots on points in x

backend elasticnet Module

This module provides a backend to the .ip model. It wraps the sklearn.linear_model.ElasticNet / ElasticNetCV objects.

class ni.model.backend_elasticnet.Configuration
Default Values:

crossvalidation = True

If true, alpha and 11_ratio will be calculated by crossvalidation.
alpha=0.5
11_ratio=1

be_memory_efficient = True Does not keep the data with which it is fitted.

18 Chapter 1. Installation

ni Documentation, Release 0.2

class ni.model .backend_elasticnet.Fit (f, m)

predict (X=False)

class ni.model .backend_elasticnet .Model (c=Fulse)

£it (x,dm)
ni.model.backend_elasticnet.compare (x, p, nr_trials=1)

ni.model.backend_elasticnet.predict (x, dm)

backend_glm Module

This module provides a backend to the .ip model. It wraps the statsmodels.api.GLM object.

class ni.model.backend_glm.Configuration
Default Values:

be_memory_efficient = True Does not keep the data with which it is fitted.

class ni.model.backend_glm.Fit (f, m)

predict (X=False)

class ni.model .backend_glm.Model (c=Fulse)

fit (y,X)
ni.model.backend_glm.compare (X, p, nr_trials=1)

ni.model.backend_glm.predict (x, dm)

1.3 The ni.model.pointprocess Module

class ni.model .pointprocess.PointProcess (dimensionality)
A Point Process container.

Usually generated by loading from a file or via ni .model.pointprocess.createPoisson ()

addSpike (1)
adds a spike to the point process, if it falls in the allowed range.

getCounts ()
Gives a (in most cases binary) time series of the point process.

getProbability (¢ from, t_to)
Undocumented

plot (y=0, marker="1")
Plots the pointprocess as points at line y.

marker determines the color and shape of the marker. Default is a vertical line ‘I’

plotGaussed (width)
Plots the pointprocess as a smoothed time series

ni.model.pointprocess.PointProcessFromSpikeTimes (fimes)

1.3. The ni.model.pointprocess Module 19

ni Documentation, Release 0.2

class ni.model .pointprocess.SimpleFiringRateModel
Uses just the firing rate as a predictor

ni.model.pointprocess.createPoisson (p,![)

compare (Data, Prediction)

fit (data)

loglikelihood (Data, Prediction)

predict (Data)

This generates a spike sequence of length / according to either a fixed firing rate p, or a repeated sequence of

firing rates if type(p) == np.ndarray.

It creates ani.model .pointprocess.PointProcess

Example 1:

pl = ni.model.pointprocess.createPoisson(0.1,1000)

pl.plotGaussed (20)
plot (pl.frate)

0.18 T

016

014

012

0.10 /-\Il"u
/

- U\/WU :

array (range (0,200))%0.01)*0.5- 0.2,1000)

004 r
D I:I 2 L L 1 L
0 200 400 200 800 1000
P2 = ni.model.pointprocess.createPoisson (sin (numpy.
p2.plot ()

p2.plotGaussed (10)

20

Chapter 1. Installation

ni Documentation, Release 0.2

10

0.8

0.4

0.2

0.0

|

|
600 1000

p2.plotGaussed (20)
plot (p2.frate)

I} 5 I 1 T T

0.4

0.3

02

0.1

200 400 GO0 800 1000

Example with multiple channels:

frate = (numpy.array(range (0,200))x0.001)%0.2+0.01
channels = 9
dists = [ni.model.pointprocess.createPoisson(frate,1000) for i in range (0,channels)]

#for i in range(0,9): dists[i].plotGaussed(10)
import itertools

1.3. The ni.model.pointprocess Module 21

ni Documentation, Release 0.2

spks = np.array([dists[i].getCounts() for i in range (0,channels) for j in range(0,99) 1)
imshow (-1+*spks)
set_cmap (' gray’)

Will generate:

(A plot of spikes)
T T TTT]
100

200

300

400

500 | 1

&00 | .
N
|| | || |.| |

0 200 400 600 800

700

800

ni.model.pointprocess.plotGaussed (np.array ([dists[i].getCounts() for i in range (0,channels)]) .me
plot (dists[0].frate)

0.06 T T T .

0.05

004

0.03

0.02

I}'I::I:LI}I 200 400 &00 800 1000

22 Chapter 1. Installation

ni Documentation, Release 0.2

ni

ni.

.model.pointprocess.getBinary (spikes, min_length=1)

Gives back a binary array from an array of spike times. The maximum for each bin is 1.

i .model.pointprocess.getCounts (spikes)

Gives back an array of spike counts from an array of spike times. If the output is suppsed to be a Binomial, use
getBinary instead.

i .model.pointprocess.interspike_interval (spikes_a, spikes_b=False)

i .model.pointprocess.plotGaussed (data, width)

P2 = ni.model.pointprocess.createPoisson (sin (numpy.array (range (0,200))x0.01)%0.5- 0.2,1000)
p2.plot ()
p2.plotGaussed (10)

10

0.8

0.6

04

0.2

0.0

0 400 600 800 1000

model .pointprocess.plotMultiSpikes (spikes)
espikes is a binary 2d matrix

Generates something like:

1.3. The ni.model.pointprocess Module 23

ni Documentation, Release 0.2

12 !) T T

10

ol

0 200 400 600 800 1000

0

ni.model.pointprocess.reverse_correlation (spikes_a, spikes_b=False)

1.4 tools Package

1.4.1 bootstrap Module

ni.tools.bootstrap.bootstrap (bootstrap_repetitions, model, data, test_data=[], shuffle=True,

prefix="", bootstrap_data= [])
A helper function that performs bootstrap evaluation of models.

A Model model is fitted with some data data, called “actual data” or “D” and subsequently on all of a num-
ber of bootstrap samples “D*_n" for n in range(bootstrap_repetitions). This yields an actual fit and boot-
strap_repetitions times boot fit (or fit*) for each sample.

Use bootstrap_results for explanations on the dimensions of the result.
bootstrap_repetitions

model

data

‘test_data‘=[]

‘shuffle ‘=True

‘prefix‘="¢ String that is prefixed to the results.

‘bootstrap_data‘=[] If new data instead of trial shuffling is to be used as bootstrap data, this data should be
passed here. The ni.data.data. Data Instance should contain an additional index Bootstrap Sample

ni.tools.bootstrap.bootstrap_samples (bootstrap_data, model, data, test _data= [] , Shuf-
fle=False, prefix="", boot_dim="Bootstrap Sample’)
Performs bootstrap evaluation with bootstrap data.

24 Chapter 1. Installation

ni Documentation, Release 0.2

A Model model is fitted with some data data, called “actual data” or “D” and subsequently on all of a num-
ber of bootstrap samples “D*_n" for n in range(bootstrap_repetitions). This yields an actual fit and boot-
strap_repetitions times boot fit (or fit*) for each sample.

Use bootstrap_results for explanations on the dimensions of the result.

bootstrap_data 1f new data instead of trial shuffling is to be used as bootstrap data, this data should be passed
here. The ni.data.data.Data Instance should contain an additional index Bootstrap Sample

model
Model to be evaluated. It needs to provide an x(), dm() and fit(x=, dm=)/fit(data) method.
data
‘test_data‘=[]
‘shuffle‘=True
‘prefix‘="¢ String that is prefixed to the results.

boot_dim The ni.data.data.Data Instance should contain an additional index Bootstrap Sample or be a list. If
some other index should be used as bootstrap samples, boot_dim can be set to that.

ni.tools.bootstrap.bootstrap_time (bootstrap_repetitions, model, data, test_data:[], pre-

fie="

Performs bootstrap evaluation of models.

A Model model is fitted with some data data, called “actual data” or “D” and subsequently on all of a num-
ber of bootstrap samples “D*_n” for n in range(bootstrap_repetitions). This yields an actual fit and boot-
strap_repetitions times boot fit (or fit*) for each sample.

Use bootstrap_results for explanations on the dimensions of the result.
bootstrap_repetitions
model

Model to be evaluated. It needs to provide an x(), dm() and fit(x=, dm=) method.
data
‘test_data‘=[]
‘prefix‘="¢ String that is prefixed to the results.

ni.tools.bootstrap.bootstrap_trials (bootstrap_repetitions, model, data, test_data:[], shuf-
fle=True, prefix="", bootstrap_data:[])
Performs bootstrap evaluation by trial shuffling.

A Model model is fitted with some data data, called “actual data” or “D” and subsequently on all of a num-
ber of bootstrap samples “D*_n” for n in range(bootstrap_repetitions). This yields an actual fit and boot-
strap_repetitions times boot fit (or fit*) for each sample.

Use bootstrap_results for explanations on the dimensions of the result.
bootstrap_repetitions
Number of bootstrap repetitions
model
Model to be evaluated. It needs to provide an x(), dm() and fit(x=, dm=)/fit(data) method.
data

‘test_data‘=[]

1.4. tools Package 25

ni Documentation, Release 0.2

‘shuffle’=True
‘prefix‘="¢ String that is prefixed to the results.

‘bootstrap_data‘=[] If new data instead of trial shuffling is to be used as bootstrap data, this data should be
passed here. The ni.data.data. Data Instance should contain an additional index Bootstrap Sample

ni.tools.bootstrap.description (prefix="", additional_information="")
Describes the common bootstrap output variables as a dictionary. additional_information will be appended to
each entry, prefix will be prepended to each key.

ni.tools.bootstrap.generate (model, bootstrap_repetitions)
ni.tools.bootstrap.merge (stats)

ni.tools.bootstrap.plotBootstrap (res, path)
Deprecated since version 0.1: use the plot capabilities of the ni . tools.statcollector.StatCollector.

ni.tools.bootstrap.plotCompareBootstrap (reses, path)
Deprecated since version 0.1: use the plot capabilities of the ni . tools.statcollector.StatCollector.

1.4.2 progressbar Module
ni.tools.progressbar.progress (a, b)
Undocumented

ni.tools.progressbar.progress_end()
Undocumented

ni.tools.progressbar.progress_init ()
Undocumented

1.4.3 project Module

NI Project Management
* All steps in a configuration / simulation process will be logged to some folder structure

* after the simulation and even after changing the original code, the results should still be viewable / interpretable
with a project viewer

* batches of runs should be easy to batch interpret (characteristic plots etc.)
* metadata should contain among others: date software versions configuration options manual comments
* saving of plots/data should be done by the project manager

class ni.tools.project .Figure (path, display=False, close=True)
Figure Context Manager

Can be used with the with statement:

import ni
x = np.arange(0,10,0.1)
with ni.figure ("some_test.png"):
plot (cos (x)) # plots to a first plot
with ni.figure("some_other_test.png"):
plot (-lxnp.array(x)) # plots to a second plot
plot (sin(x)) # plots to the first plot again

Or if they are to be used in an interactive console:

26 Chapter 1. Installation

ni Documentation, Release 0.2

import ni
x = np.arange(0,10,0.1)
with ni.figure ("some_test.png",close=False):
plot (cos (x)) # plots to a first plot
with ni.figure ("some_other_test.png",close=False):
plot (-l*np.array(x)) # plots to a second plot
plot (sin(x)) # plots to the first plot again

Both figures will be displayed, but the second one will remain available after the code. (But keep in mind that
in the iPython pylab console, after every input, all figures will be closed)

close ()

show (close=True)

I3

class ni.tools.project.Jdob (project, session, path, job_name=’‘, job_number=’", file="", sta-

tus="initializing..., dependencies= [])

can_run ()
get_status ()
html_view ()

run (parameters= [])
save ()

set_activity (msg="")
set_status (msg="")
update ()

class ni.tools.project.ListContainer

append (msg_type, priority, date, job, txt)
clear ()

classni.tools.project.LogContainer (f)

append (msg_type, priority, date, job, txt)
clear ()

class ni.tools.project.PickleContainer (f)

append (msg_type, priority, date, job, txt)
clear ()

class ni.tools.project.Project (folder="unsaved_project’, name="")
Project Class

loads a Project folder (containing eg. a main.py file)
abandon ()

autorun ()

clear ()

dbg (txt, priority=-1)

1.4. tools Package 27

ni Documentation, Release 0.2

do_log (b)

dumpheap ()

err (xt, priority=0)

execute (code, local_vars={}, session=False)
find_sessions ()
get_parameters_from job_file ()
get_session_status (r=False)
html_view ()

job (j)

TODO: rename to something else
job_activate (j, msg="running...’)
job_done (j)
last_run()
less_running_than (N)
log (xt, priority=0)
msgqg (msg_type, txt, priority=0)
next ()
next_ job (ignore_dependencies=False)
parse_job_file (filename, session)
print_job_status ()
print_long_ job_status()
report (silent=False)
reportHTML ()
require_job (j)
reset_failed jobs ()
run (parameters= [], job=False)
save (name, val)
save_html (path="project.html’)
select_session (path)
set_session_status (msg="running...’)
setup_jobs (parameter_string="")
sibjob (j)

Sibling Job

Is on the same level as the previous job (ie. a child of its parent)
subjob (j)
superjob ()
update_job_status ()

28

Chapter 1. Installation

ni Documentation, Release 0.2

class ni.tools.project.Session (project, path="", parameter_string="")

abandon ()

add_job (job_name=""‘, job_number="", **kwargs)
execute (code, local_vars={})

find_jobs ()

get_status ()

html view ()

next_job (retry_failed=False, ignore_dependencies=False)
parse_job_file (filename, parameter_string="")
print_job_status ()

print_long_ job_status ()

reset_failed_jobs (which="failed.’, to="pending’)
save_html (path="session.html’)

set_status (msg="")

setup_jobs (source_file, parameter_string="")
update_job_files (source_file="‘, parameter_string="")

update_jobs ()

class ni.tools.project.TemporaryJob (project, session, job_name)

Bases: ni.tools.project.Job

class ni.tools.project.TemporarySession (project)

Bases: ni.tools.project.Session

classni.tools.project.VariableContainer

ni.

tools.project.atoi (rext)
converts text containing numbers into ints / used by natural_keys ()

i.tools.project .dbg (txt, priority=-1)
i.tools.project.do_log (b)

i .tools.project.dumpheap ()
i.tools.project.err (txt, priority=0)

i.tools.project.figure (path, display=False, close=True)

Can be used with the with statement:

import ni
X = np.arange(0,10,0.1)
with ni.figure ("some_test.png"):

plot (cos (%)) # plots to a first plot
with ni.figure("some_other_test.png"):

plot (-1l*np.array(x)) # plots to a second plot
plot (sin(x)) # plots to the first plot again

Or if they are to be used in an interactive console:

1.4. tools Package

29

ni Documentation, Release 0.2

import ni
x = np.arange(0,10,0.1)
with ni.figure("some_test.png",display=True) :
plot (cos (x)) # plots to a first plot
with ni.figure("some_other_test.png",close=False):
plot (-lxnp.array(x)) # plots to a second plot
plot (sin(x)) # plots to the first plot again

Both of these figures will be displayed, but the second one will remain open and can be activated again.

i.tools.project. job (j)
i.tools.project.load (path)
i.tools.project.log (txt, priority=0)

i.tools.project.natural_keys (fext)

alist.sort(key=natural_keys) sorts in human order (See Toothy’s implementation in the comments
http://nedbatchelder.com/blog/200712/human_sorting.html)

i.tools.project.natural_sorted (/)

sorts a sortable in human order (0 < 20 < 100)

i.tools.project.report (silent=False)
i.tools.project.require_job (j)
i.tools.project.run()
i.tools.project.save (name, val)

i .tools.project.sibjob (j)
i.tools.project.subjob (j)

i .tools.project.superjob ()

1.4.4 html_view Module

This module can generate HTML output from text or objects that provide a .html_view() function:

import ni
view = ni.View () # this 1s a shortcut for ni.tools.html_view.View
view.add ("#1/title","This is a test")

view.add ("#2/Some Example Models/tabs/",ni.model.ip.Model (
view.add ("#2/Some Example Models/tabs/",ni.model.ip.Model ({’autohistory_ 2d’:True, ’name’:
view.add ("#2/Some Example Models/tabs/",ni.model.ip.Model (

{’"name’ : ’"Basic Model’}))

view.add ("#3/Some Example Data/tabs/1",ni.data.monkey.Datal())
view.render ("this_is_a_test.html")

class ni.tools.html_view.Figure (view, path, close=True, figsize=False)

Figure Context Manager
Can be used with the with statement:

import ni
v = ni.View/()
x = np.arange(0,10,0.1)
with ni.tools.html_view.Figure (v, "some test"):
plot (cos (x)) # plots to a first plot
with ni.tools.html_view.Figure (v, "some other test"):
plot (-l*np.array(x)) # plots to a second plot

of

30

Chapter 1. Installation

"Model witl

{"rate’ :False, ’'name’: ’'Model without Rate

http://nedbatchelder.com/blog/200712/human_sorting.html

ni Documentation, Release 0.2

plot (sin(x)) # plots to the first plot again

v.render ("context_manager_test.html")

class ni.tools.html_view.View (path="")

add (path, obj)

figure (path="", close=True, figsize=False)

Provides a Context Manager for figure management

Should be used if plots are to be used in
Example:

import ni

v = ni.View/()

x = np.arange(0,10,0.1)
with v.figure ("some test"):

plot (cos (x)) # plot to a first plot
with v.figure("some other test"):
plot (-lxnp.array (x)) # plot to a second plot
plot (sin(x)) # plot to the first plot again

v.render ("context_manager_test.html")

has (path)

html view ()

load (filename)

loadList (filenames)

load_glob (filename_template)

load_list (filenames)

parse (tree)

process (obj, mode="text’)

render (path, include_files=True)

save (filename)

savefig (p="" fig="", close=True)
ni.tools.html_view.atoi (text)

ni.tools.html_view.natural_keys (fext)

alist.sort(key=natural_keys) sorts in human order http://nedbatchelder.com/blog/200712/human_sorting.html

(See Toothy’s implementation in the comments)

ni.tools.html_view.natural sorted (/)
sorts a sortable in human order (0 < 20 < 100)

1.4.5 strap Module

ni.tools.strap.bootstrap (bootstrap_repetitions, model, data, test_data:[], shuffle=True, prefix="",

bootstrap_data= [])

A helper function that performs bootstrap evaluation of models.

1.4. tools Package

31

http://nedbatchelder.com/blog/200712/human_sorting.html

ni Documentation, Release 0.2

A Model model is fitted with some data data, called “actual data” or “D” and subsequently on all of a num-
ber of bootstrap samples “D*_n" for n in range(bootstrap_repetitions). This yields an actual fit and boot-
strap_repetitions times boot fit (or fit*) for each sample.

Use bootstrap_results for explanations on the dimensions of the result.
bootstrap_repetitions

model

data

‘test_data‘=[]

‘shuffle’=True

‘prefix‘="¢ String that is prefixed to the results.

‘bootstrap_data‘=[] If new data instead of trial shuffling is to be used as bootstrap data, this data should be
passed here. The ni.data.data. Data Instance should contain an additional index Bootstrap Sample

ni.tools.strap.bootstrap_samples (bootstrap_data, model, data, test_data= [], shuffle=False,

prefix="", boot_dim="Bootstrap Sample’)
Performs bootstrap evaluation with bootstrap data.

A Model model is fitted with some data data, called “actual data” or “D” and subsequently on all of a num-
ber of bootstrap samples “D*_n" for n in range(bootstrap_repetitions). This yields an actual fit and boot-
strap_repetitions times boot fit (or fit*) for each sample.

Use bootstrap_results for explanations on the dimensions of the result.

bootstrap_data 1f new data instead of trial shuffling is to be used as bootstrap data, this data should be passed
here. The ni.data.data.Data Instance should contain an additional index Bootstrap Sample

model
Model to be evaluated. It needs to provide an x(), dm() and fit(x=, dm=)/fit(data) method.
data
‘test_data‘=[]
‘shuffle‘=True
‘prefix‘="¢ String that is prefixed to the results.

boot_dim The ni.data.data.Data Instance should contain an additional index Bootstrap Sample or be a list. If
some other index should be used as bootstrap samples, boot_dim can be set to that.

ni.tools.strap.bootstrap_time (bootstrap_repetitions, model, data, test_data=[], prefix="")

Performs bootstrap evaluation of models.

A Model model is fitted with some data data, called “actual data” or “D” and subsequently on all of a num-
ber of bootstrap samples “D*_n" for n in range(bootstrap_repetitions). This yields an actual fit and boot-
strap_repetitions times boot fit (or fit*) for each sample.

Use bootstrap_results for explanations on the dimensions of the result.
bootstrap_repetitions
model

Model to be evaluated. It needs to provide an x(), dm() and fit(x=, dm=) method.
data

‘test_data‘=[]

32

Chapter 1. Installation

ni Documentation, Release 0.2

‘prefix‘="¢ String that is prefixed to the results.

ni.tools.strap.bootstrap_trials (bootstrap_repetitions, model, data, test_data=[], shuf-
fle=True, prefix="", bootstrap_data= [])
Performs bootstrap evaluation by trial shuffling.

A Model model is fitted with some data data, called “actual data” or “D” and subsequently on all of a num-
ber of bootstrap samples “D*_n” for n in range(bootstrap_repetitions). This yields an actual fit and boot-
strap_repetitions times boot fit (or fit*) for each sample.

Use bootstrap_results for explanations on the dimensions of the result.
bootstrap_repetitions
Number of bootstrap repetitions
model
Model to be evaluated. It needs to provide an x(), dm() and fit(x=, dm=)/fit(data) method.
data
‘test_data‘=[]
‘shuffle‘=True
‘prefix‘="¢ String that is prefixed to the results.

‘bootstrap_data‘=[] If new data instead of trial shuffling is to be used as bootstrap data, this data should be
passed here. The ni.data.data. Data Instance should contain an additional index Bootstrap Sample

ni.tools.strap.description (prefix="", additional_information="")
Describes the common bootstrap output variables as a dictionary. additional_information will be appended to
each entry, prefix will be prepended to each key.

ni.tools.strap.generate (model, bootstrap_repetitions)
ni.tools.strap.merge (stats)

ni.tools.strap.plotBootstrap (res, path)
Deprecated since version 0.1: use the plot capabilities of the ni . tools.statcollector.StatCollector.

ni.tools.strap.plotCompareBootstrap (reses, path)
Deprecated since version 0.1: use the plot capabilities of the ni . tools.statcollector.StatCollector.

1.4.6 statcollector Module

class ni.tools.statcollector.StatCollector (stat_init={})
A class to collect statistics about models. It can be used to analyse nested models, as slashes in the name are
interpreted as submodels.

Example:

>>> rate model/0

>>> rate model/1l

>>> rate model/2

>>> rate model/3

>>> nested model/0
>>> nested model/1
>>> nested model/2
>>> nested model/3
>>> nested model/0/1
>>> nested model/0/2

1.4. tools Package 33

ni Documentation, Release 0.2

>>> nested model/0/3

>>> nested model/0/2/1
>>> nested model/0/2/3
>>> nested model/0/2/3/1

This example could be generated by fitting a model with a certain number of crosshistory cells. In each iteration
the best model is extended by another cell. The nested model can then be evaluated whether it has increasing

likelihood and/or eic, aic or other statistics:

>>> stats.getModelsOnPath ([’ nested model’,0,2,3,1]).get ("eic’)
[-1023, -1020, -900, -950]

self.stats: a dict of lists, each list containing dicts with: name 1If eic, aic, eice, complexity (optional) addi-

tional - a dict with more information (ignored for now)

addNode (name, data={})

adds the node name with the attributes in the dictionary dic. If name exists, it wll be overwritten.

addToNode (name, dic)
adds all attributes in the dictionary dic to the node name

filter (name)
returns a StatCollector Object with only a subset of models

get (dim)
returns a numpy ndarray with the dim attributes of each node that contains dim

getChildren ()

getDimensions ()
returns which dimensions are availble for the contained nodes

getList (dim)
returns a list with the dim attributes of each node that contains dim

getModelsOnPath (name)
returns models that lead to the node name

getNode (name)
returns a dictionary with all attributes of the node name

getTree (substitution_patterns= [])
returns a tuple used by plotTree to plot a tree representation of the nodes.

html_view ()
Generates an html_view of this object.

Example:
stats.html_view() .render (/' stats file.html’)
keys ()
returns the name of all nodes. Synonym of StatCollector.nodes ()

load (filename)
Loads the StatCollector saved to filename.

This file should be a pickled dictionary.

loadList (filenames)
loads a list of files. (Alias of StatCollector.load_list ())

34

Chapter 1

. Installation

ni Documentation, Release 0.2

load_glob (filename_template)

load_list (filenames)
loads a list of files

nodes ()
returns the name of all nodes. Synonym of StatCollector.keys ()

plotHist (path, width, dims)
plots a histogram of each dimension in dims

plotTree (dim, substitution_patterns= [] line_kwargs={}, marker_kwargs={}, right_to_left=False)
Plots a tree of the nodes, using dim as the height, if the node contains dim.

Slashes in the model names will be used as the different levels in the tree. The order of the parts between
the slashes is ignored for now (3/4 and 4/3 are the same).

substitution_patterns may contain substitution patterns (used to connect nodes) for re.sub as a three tuple
(pattern, substitute, color), where color is the color that will be assigned to this connection

line_kwargs and marker_kwargs can contain arguments in a dictionary to alter the options to set lines or
markers. The dictionary will be passed on to the plot function.

right_to_left determines, whether the plot is plotted from left to right (default) or the other way around
(right_to_left = True).

prefix (prefix="/")
Makes the last node a part of the property name

pull_from_inner_dict (from_dictionary="statistics’, from_key="bic’, to_key="BIC’)
If a dictionary is added as a dimension, this function can pull values from that dictionary and add them to
each node that has the specific dictionary. As the bootstrap functions add the statistics dictionary of the
model fit to the node, this function has to be used to eg. access the BIC criterion (which is why this is the
default from and to keys).

re (regex)
returns a StatCollector Object with only a subset of models

rename (pattern, substitution)
Renames nodes with the regex pattern pattern just like re . sub ().

Example to rename different number of knots to a tree, where each the increase in knots is counted as a
submodel:

statsr = stats.rename (r’50’,’30/50") .rename(r’30’,720/30") .rename(r’20",710/20") .rename (r’ 1(

rename_value_to_tree (value=-1)
Renames nodes, such that increases of one value are counted as submodels

value is the index (of the slash splitted node name) of the value that is to be replaced. The default is -1, ie.
the last value.

Example:

import ni

stats = ni.StatCollector()
stats.addNode (' Model 0/10",{"a’:100})
stats.addNode (' Model 0/20",{"a’:100})
stats.addNode (' Model 0/307,{"a’”:100})
stats.addNode (' Model 0/507,{"a’:100})
stats.addNode (' Model 0/1000",{"a’”:100})
stats.rename_value_to_tree() .plotTree(’'a’)

1.4. tools Package 35

http://docs.python.org/library/re.html#re.sub

ni Documentation, Release 0.2

The example will rename the last node to ‘Model 0/10/20/30/50/1000’

save (filename)
Saves the StatCollector to filename.

This file will be a pickled dictionary.

set (name, key, value)
sets one attribute for node name

split (keys)
Takes a portion of the property names and makes it a node

ni.tools.statcollector.atoi (fext)

converts text containing numbers into ints / used by natural_keys ()
ni.tools.statcollector.listToPath (name)

Creates a string that joins a list together with slashes. The list can contain strings and numbers.
ni.tools.statcollector.natural_keys (fext)

alist.sort(key=natural_keys) sorts in human order (See Toothy’s implementation in the comments of

http://nedbatchelder.com/blog/200712/human_sorting.html)
ni.tools.statcollector.natural_sorted (/)

sorts a sortable in human order (0 < 20 < 100)
36 Chapter 1. Installation

http://nedbatchelder.com/blog/200712/human_sorting.html

CHAPTER
TWO

INDICES AND TABLES

* genindex
* modindex

e search

37

ni Documentation, Release 0.2

38

Chapter 2. Indices and tables

CHAPTER
THREE

SOME EXAMPLES

This code can be executed in an ipython notebook (to be used in your browser) or gqtconsole.
To start a notebook:

ipython notebook —--pylab=inline

To start the gtconsole:

ipython gtconsole —--pylab=inline

This will load matplotlib functions for easy plotting and even provide many aliases that use names similar to the ones
used in matlab.

3.1 Basic Example

The most basic example (if a path to the data is set and accessible) of how to use the toolbox is:

import ni

data = ni.data.monkey.Data (condition = 0)

model = ni.model.ip.Model({’cell’ :4,’crosshistory’:[6,71})
fm = model.fit (data.trial (range(data.nr_trials/2)))

plot (fm.prototypes () [rate’], k")

The first line loads data from the monkey module with the default filename. The second line creates a model for cell
4, using 6 and 7 as crosshistory dependencies. Then the model is fitted on half of the data and the rate component is
displayed.

3.2 Generating example data

If no data is available, some can be generated with the net_sim module:

import ni

conf = ni.model.net_sim.SimulationConfiguration ()
conf.Nneur = 10

conf.Ntrials = 100

r = ni.model.net_sim.simulate (conf)

print r.data

Will output:
Spike data: 1 Condition(s) 100 Trial(s) of 10 Cell(s) in 1000 Time step(s). No other data.

39

ni Documentation, Release 0.2

The data can then be used with a model:

model = ni.model.ip.Model ({’cell’ :4,’crosshistory’:[6,7]})
fm = model.fit (r.data.trial (range(r.data.nr_trials/2)))
fm.plot_prototypes ()

3.3 Using other sources of data

If the nltk (http://nltk.org/) is installed, you can also generate data like this:

import ni

import numpy as np

import pandas

from nltk.corpus import genesis

from ni.model.pointprocess import getBinary

trial_length = 1000 # use blocks of this many characters as a trial
d =[]
index_tuples = []

for (condition, txt_file) in enumerate([’english-kjv.txt’,’ finnish.txt’,’german.txt’,’ french.txt’]):
s = genesis.raw(txt_file).replace(’.\n’,’ ’).replace('\n’,’ ’).replace(’.’,’ ') # to make th
for t in range(len(s)/trial_length):
for (cell, letter) in enumerate ([’ ', 'a’, ’'e’, "i’"]1):
d.append (list (getBinary(np.cumsum([len(w)+1l for w in s[(txtrial_length) : ((t-
index_tuples.append((condition,t,cell))
index = pandas.MultiIndex.from_tuples(index_tuples, names=[’Condition’,’Trial’,’Cell’])
data = ni.Data(pandas.DataFrame (d, index = index))

model = ni.model.ip.Model ({’history_length’:10, ’'rate’:False})
for condition in range (4):
fm = model.fit (data.condition(condition) .trial (range(50)))
print str(condition)+’: ’ + ' ’.join([str(fm.compare (data.condition (i) .trial (range(50,100)))

3.4 Adding a custom kernel

To add a designmatrix component to the default model, include it in the custom_components list of the configuration.:

import ni

data = ni.data.monkey.Data (condition=0)
long_kernel = ni.model.create_splines.create_splines_linspace(data.nr_trials = data.trial_length, 5, F«
ni.model.ip.Model ({’custom_components’: [ni.model.designmatrix.Component (header=’'trend’, kernel=lonc

3.5 StatCollectors

An example of adding something to a StatCollector:

import ni

stat = ni.StatCollector ()

stat.addNode ("Model 0", {’name’: ’'First Model’,
"11_test’: -240,
"1l _train’: -80,
"complexity’ :10})

stat.addNode ("Model 0/1", {’name’: ’Second Model’,

40 Chapter 3. Some Examples

http://nltk.org/

ni Documentation, Release 0.2

"1l _test’: =100,

"11_train’: -90,

"complexity’ :14})
stat.addNode ("Model 0/2", {’name’: ’'Third Model’,

"1l _test’: -130,

"1l _train’: -85,

"complexity’ :14})
stat.plotTree(’11_train’)

Will output:

e Il train

|
]
o]
T
&
s
I
!

|
[5]
=
T

&

|
%5}
[=3

T
'

|
ca
[a]

T

ot

-

A
u, - \hﬂéﬁ

LS . qﬁfjffh

%0 02 0.4 0.6

10

Mostly, the output of ni.tools.bootstrap functions will be added to the StatCollector, containing all the im-

portant information.

3.5. StatCollectors

41

ni Documentation, Release 0.2

42

Chapter 3. Some Examples

i.data.data (Unix), 3

i .data.decoding_data (Unix), 6

i .data.monkey (Unix), 6

i .model .backend_elasticnet (Unix), 20
i .model .backend_glm (Unix), 21

i .model.create_design_matrix_vk, 19
i .model.create_splines, 20

i .model.designmatrix (Unix), 14

i .model.ip (Unix), 11

i .model.net_sim (Unix), 17

i .model.pointprocess (Unix), 21
i.tools.bootstrap (Unix), 26
i.tools.html_view (Unix), 32
i.tools.progressbar (Unix), 28
i.tools.project (Unix), 28

i .tools.statcollector (Unix), 35
i.tools.strap (Unix), 33

PYTHON MODULE INDEX

43

	Installation
	data Package
	model Package
	The ni.model.pointprocess Module
	tools Package

	Indices and tables
	Some Examples
	Basic Example
	Generating example data
	Using other sources of data
	Adding a custom kernel
	StatCollectors

	Python Module Index

